Using Relevance Feedback in Content-Based Image Metasearch

نویسندگان

  • Ana B. Benitez
  • Mandis Beigi
  • Shih-Fu Chang
چکیده

metasearch engine developed to explore the query of large, distributed, online visual information systems. The current implementation integrates user feedback into a performance-ranking mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

A Content-Based Image Meta-Search Engine using Relevance Feedback

Search engines are the most powerful resources for finding information on the rapidly expanding World-Wide Web. Finding the desired search engines and learning how to use them, however, can be very time consuming. Metasearch engines, which integrate a group of such search tools, enable users to access information across the world in a transparent and more efficient manner. The recent emergence ...

متن کامل

Web searcher interaction with the Dogpile.com metasearch engine

Metasearch engines are an intuitive method for improving the performance of Web search by increasing coverage, returning large numbers of results with a focus on relevance , and presenting alternative views of information needs. However, the use of metasearch engines in an operational environment is not well understood. In this study, we investigate the usage of Dogpile.com, a major Web metasea...

متن کامل

Relevance Feedback for Content-Based Image Retrieval Using Bayesian Network

Relevance feedback is a powerful query modification technique in the field of content-based image retrieval. The key issue in relevance feedback is how to effectively utilize the feedback information to improve the retrieval performance. This paper presents a relevance feedback scheme using Bayesian network model for feedback information adoption. Relevant images during previous iterations are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Internet Computing

دوره 2  شماره 

صفحات  -

تاریخ انتشار 1998